

Chapter 6: Building a Full-Stack CRUD
Application

Introduction
In modern web applications, almost everything revolves around data. Whether it’s a social
media post, a product in an e-commerce store, or a simple to-do item, applications need to
store, retrieve, update, and delete data. These four operations are collectively called
CRUD:

●​ C – Create: Add new data.​

●​ R – Read: Retrieve or display existing data.​

●​ U – Update: Modify data.​

●​ D – Delete: Remove data.​

This chapter will guide you in building a full-stack Task Manager application from scratch
using HTML, CSS, JavaScript, Node.js, Express, and MongoDB. Along the way, we will
explain:

1.​ How front-end and back-end communicate.​

2.​ How HTTP methods map to CRUD operations.​

3.​ How to store, query, update, and delete data in MongoDB.​

4.​ How JavaScript updates the UI dynamically.​

5.​ Best practices for structuring code and projects.​

By the end, you will understand not only how to code but also why each step works,
giving you the knowledge to build any CRUD application in the future.

1. Full-Stack Architecture Overview

Before coding, let's visualize how the different parts of our application interact:

+----------------+ +------------------+ +------------------+
	HTTP		Queries	
Front-End	-------->	Back-End	-------->	Database
(HTML/CSS/JS)		(Node.js/Express)		(MongoDB)
	<--------		<--------	
Dynamically	Response	Handles Requests	Response	Stores Data
Updates UI		CRUD Operations		
+----------------+ +------------------+ +------------------+

Roles of Each Layer

●​ Front-End (Client): Handles user interaction. It collects input and displays output.
JavaScript allows the UI to update dynamically without reloading the page.​

●​ Back-End (Server): Handles business logic and data operations. Express
simplifies routing and request handling.​

●​ Database: Stores persistent data. MongoDB uses collections and documents,
making it flexible and scalable.​

Analogy

Think of your application like a restaurant:

●​ Front-End: The waiter who takes your order (input) and serves your food (output).​

●​ Back-End: The kitchen that prepares the meal according to instructions.​

●​ Database: The pantry/storage where ingredients (data) are kept.​

2. Core Concepts Before Coding

2.1 CRUD Operations and HTTP Methods

CRUD Operation HTTP Method Description

Create POST Add new data to the database

Read GET Retrieve existing data from the
database

Update PUT/PATCH Modify existing data in the database

Delete DELETE Remove data from the database

●​ ​
POST is used when creating new records.​

●​ GET is used for fetching data without changing it.​

●​ PUT/PATCH is for updating existing records.​

●​ DELETE removes data permanently.​

2.2 MongoDB Fundamentals

●​ MongoDB is a NoSQL database.​

●​ Data is stored as documents in collections, similar to JSON objects.​

●​ Each document has a unique _id for identification.​

Example document:

{
 "_id": "64f9a0f2b6f1f2d1e1234567",
 "name": "Buy groceries"
}

●​ _id ensures each task can be uniquely identified.​

●​ MongoDB allows flexible schema, meaning documents in the same collection can
have slightly different fields.​

2.3 Client-Server Communication

●​ Front-End: Sends HTTP requests (GET, POST, PUT, DELETE) using Fetch API.​

●​ Back-End: Listens on routes (e.g., /tasks) and executes corresponding
operations.​

●​ Database: Performs CRUD operations and sends results back.​

●​ Front-End: Receives response and updates the DOM dynamically.​

Data Flow Example: Adding a Task

1.​ User types task → clicks Add.​

2.​ JavaScript sends a POST request to /tasks.​

3.​ Server receives request → inserts task into MongoDB.​

4.​ Server responds with success.​

5.​ JavaScript fetches updated task list → updates UI.​

3. Setting Up the Project

3.1 Folder Structure
task-manager/
├── public/
│ ├── index.html
│ ├── style.css
│ └── script.js
├── server.js
├── package.json

●​ public/: Contains front-end files.​

●​ server.js: Back-end entry point.​

●​ package.json: Manages project dependencies.​

3.2 Initialize Node.js Project
npm init -y

This creates package.json.

3.3 Install Dependencies
npm install express mongodb
npm install --save-dev nodemon

●​ Express: Framework for handling HTTP requests.​

●​ MongoDB driver: Connects Node.js to MongoDB.​

●​ Nodemon: Automatically restarts the server during development.​

4. Front-End Development

4.1 HTML
<!DOCTYPE html>
<html>
<head>
 <title>Task Manager</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <div class="container">
 <h1>Task Manager</h1>
 <form id="task-form">
 <input type="text" id="task-input" placeholder="Enter a new task" required>
 <button type="submit">Add Task</button>
 </form>
 <ul id="task-list">
 </div>
 <script src="script.js"></script>
</body>
</html>

Explanation:

●​ <form>: Allows user to input tasks.​

●​ : Dynamically lists all tasks.​

●​ script.js: Handles API requests and DOM updates.​

4.2 CSS
body {
 font-family: Arial;
 background: #f4f4f4;
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
}

.container {
 background: white;
 padding: 20px;
 width: 400px;
 border-radius: 5px;
 box-shadow: 0 0 10px rgba(0,0,0,0.1);
}

h1 { text-align: center; }

form { display: flex; gap: 10px; }
input[type="text"] { flex: 1; padding: 8px; border-radius: 3px; border: 1px solid #ccc; }
button { padding: 8px 12px; border: none; border-radius: 3px; background: #5cb85c; color:
white; cursor: pointer; }
button:hover { background: #4cae4c; }

ul { list-style: none; padding: 0; margin-top: 20px; }
li { display: flex; justify-content: space-between; background: #eee; padding: 8px;
margin-bottom: 5px; border-radius: 3px; }
li button { margin-left: 5px; }

Explanation:

●​ Provides a clean, readable UI.​

●​ Makes buttons visually distinct for Edit and Delete actions.​

4.3 JavaScript

document.addEventListener('DOMContentLoaded', () => {
 const form = document.getElementById('task-form');
 const input = document.getElementById('task-input');
 const list = document.getElementById('task-list');

 // Load all tasks from server
 function loadTasks() {
 fetch('/tasks')
 .then(res => res.json())
 .then(tasks => {
 list.innerHTML = '';
 tasks.forEach(task => {
 const li = document.createElement('li');
 li.textContent = task.name;

 // Edit button
 const editBtn = document.createElement('button');
 editBtn.textContent = 'Edit';
 editBtn.onclick = () => {
 const newName = prompt('Edit task', task.name);
 if(newName) {
 fetch(`/tasks/${task._id}`, {
 method: 'PUT',
 headers: {'Content-Type': 'application/json'},
 body: JSON.stringify({name: newName})
 }).then(loadTasks);
 }
 };

 // Delete button
 const deleteBtn = document.createElement('button');
 deleteBtn.textContent = 'Delete';
 deleteBtn.onclick = () => {
 fetch(`/tasks/${task._id}`, { method: 'DELETE' }).then(loadTasks);
 };

 li.appendChild(editBtn);
 li.appendChild(deleteBtn);
 list.appendChild(li);
 });
 });
 }

 // Add new task
 form.addEventListener('submit', e => {
 e.preventDefault();
 const name = input.value.trim();
 if(name) {

 fetch('/tasks', {
 method: 'POST',
 headers: {'Content-Type': 'application/json'},
 body: JSON.stringify({name})
 }).then(() => { input.value=''; loadTasks(); });
 }
 });

 loadTasks();
});

Explanation:

●​ loadTasks(): Fetches tasks and updates the DOM.​

●​ Edit button: Sends a PUT request to update task.​

●​ Delete button: Sends a DELETE request.​

●​ form submission: Sends a POST request.​

5. Back-End Development
const express = require('express');
const { MongoClient, ObjectId } = require('mongodb');

const app = express();
const port = 3000;

app.use(express.json());
app.use(express.static('public'));

const url = 'mongodb://localhost:27017';
const dbName = 'taskdb';

MongoClient.connect(url, { useUnifiedTopology:true }, (err, client) => {
 if(err) return console.error(err);
 const db = client.db(dbName);
 const tasks = db.collection('tasks');

 // GET all tasks
 app.get('/tasks', (req, res) => {
 tasks.find({}).toArray((err, result) => {

 if(err) res.status(500).send(err); else res.json(result);
 });
 });

 // POST new task
 app.post('/tasks', (req, res) => {
 const task = {name: req.body.name};
 tasks.insertOne(task, (err) => {
 if(err) res.status(500).send(err); else res.status(201).send('Task added');
 });
 });

 // PUT update task
 app.put('/tasks/:id', (req, res) => {
 tasks.updateOne({_id: ObjectId(req.params.id)}, {$set: {name: req.body.name}}, (err)
=> {
 if(err) res.status(500).send(err); else res.send('Task updated');
 });
 });

 // DELETE task
 app.delete('/tasks/:id', (req, res) => {
 tasks.deleteOne({_id: ObjectId(req.params.id)}, (err) => {
 if(err) res.status(500).send(err); else res.send('Task deleted');
 });
 });

 app.listen(port, () => console.log(`Server running at http://localhost:${port}`));
});

Theory & Explanation:

●​ Express handles routing.​

●​ Each route corresponds to a CRUD operation.​

●​ ObjectId ensures each task can be uniquely updated or deleted.​

●​ app.use(express.json()) parses JSON from incoming requests.​

6. Running and Testing the Application

1.​ Start MongoDB.​

2.​ Run the server:​

npm start

3.​ Open browser at http://localhost:3000.​

4.​ Test adding, editing, deleting tasks.​

5.​ Observe how data persists in MongoDB.​

7. Key Concepts Recap
●​ CRUD Operations – Core of any data-driven application.​

●​ HTTP Methods – POST, GET, PUT, DELETE map to CRUD.​

●​ Front-End – HTML, CSS, JS for interaction and dynamic updates.​

●​ Back-End – Node.js + Express for request handling.​

●​ Database – MongoDB stores tasks as documents.​

●​ Full-Stack Flow – Front-End ↔ Server ↔ Database.​

8. Advanced Tips for Students
●​ Add input validation to prevent empty tasks.​

●​ Add task completion feature.​

●​ Implement timestamps and sorting.​

●​ Add user authentication.​

●​ Enhance UI with CSS frameworks or animations.​

	Chapter 6: Building a Full-Stack CRUD Application
	Introduction
	1. Full-Stack Architecture Overview
	Roles of Each Layer
	Analogy

	2. Core Concepts Before Coding
	2.1 CRUD Operations and HTTP Methods
	2.2 MongoDB Fundamentals
	2.3 Client-Server Communication

	3. Setting Up the Project
	3.1 Folder Structure
	3.2 Initialize Node.js Project
	3.3 Install Dependencies

	4. Front-End Development
	4.1 HTML
	4.2 CSS
	4.3 JavaScript

	5. Back-End Development
	6. Running and Testing the Application
	7. Key Concepts Recap
	8. Advanced Tips for Students

